
 

 

 
 

Digital ASIC Fabrication 
DESIGN DOCUMENT 

 

 

sddec22-17 

Dr. Duwe & Dr. Huang 

Dawood Ghauri - Researcher / Design Workflow 

Constantine Mantas - Researcher / Team Organization Leader 

Soma Szabo - Researcher / Component Design 

Courtney Violett - Researcher / Testing 

sddec22-17@iastate.edu 

https://sddec22-17.sd.ece.iastate.edu 

Revised: 12/12/2022 

 

  

mailto:dghauri@iastate.edu
mailto:cmantas@iastate.edu
mailto:sszabo@iastate.edu
mailto:cviolett@iastate.edu
mailto:sddec22-17@iastate.edu
https://sddec22-17.sd.ece.iastate.edu/


1 

Executive Summary 

 

Development Standards & Practices Used 

● IEEE Standard VITAL ASIC (Application Specific Integrated Circuit) 

Modeling Specification - We are designing an ASIC using a modeling 

standard so this will allow us to more clearly communicate our design to 

other engineers. 

● IEEE Standard Testability Method for Embedded Core-based Integrated 

Circuits - We are designing an ASIC using a testing standard so this will 

allow us to more accurately verify our testing process. 

● IEEE Standard for Integrated Circuit (IC) Open Library Architecture 

(OLA)- This is useful for our ASIC design because it covers ways for 

integrated circuit designers to analyze chip timing and power consistently 

across a broad set of electric design automation (EDA) applications. 

 

Summary of Requirements 

● The design is selected and manufactured by efabless in their Open MPW 

shuttle program. 

● The digital design is able to take in a block header and calculate the next 

hash of a block by testing various nonce values to compute a valid hash. 

● The fabricated ASIC is able to perform the expected tasks as compared to 

the simulated pre-silicon design. 

 

Applicable Courses from Iowa State University Curriculum  

● EE 330: Integrated Electronics 

● CPRE 381: Computer Organization and Design 

● CPRE 288: Embedded Systems I 



2 

● CPRE 480: Graphics Processing and Architecture 

 

New Skills/Knowledge acquired that was not taught in courses 

● Researching use of new design software using github and community 

communication channels such as slack. 

● The ability to troubleshoot problems whose solutions are much more 

complex than a simple google search. 

● Utilizing Openlane to harden a digital design which allows for place and 

route of the design to be done digitally and a schematic of the design to be 

output. 

● Utilizing Open-Source hardware development software which often relies 

on an interplay of numerous libraries and lacks adequate documentation. 

● Creating and using a linux docker to run a local dev environment. 

● Creating a plan for pre and post-silicon bring-up that highlights how the 

chip will be tested and debugged. 

● Learning hardware design skills and languages such as Verilog and 

SystemVerilog to create our design. 

 

  



3 

Table of Contents 

1 Team 11 

1.1 Team Members 11 

1.2 Required Skill Sets for Your Project 11 

1.3 Skill Sets covered by the Team 11 

1.4 Project Management Style Adopted by the team 11 

1.5 Initial Project Management Roles 12 

2 Introduction 12 

2.1 Problem Statement 12 

2.2 Requirements & Constraints 12 

2.3 Engineering Standards 13 

2.4 Intended Users and Uses 14 

3 Project Plan 14 

3.1 Project Management/Tracking Procedures 14 

3.2 Task Decomposition 14 

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 15 

3.4 Project Timeline/Schedule 17 

3.5 Risks And Risk Management/Mitigation 19 

3.6 Personnel Effort Requirements 19 

3.7 Other Resource Requirements 20 

4  Design 21 

4.1 Design Context 21 

4.1.1 Broader Context 21 

4.1.2 User Needs 21 

4.1.3 Prior Work/Solutions 22 

4.1.4 Technical Complexity 22 

4.2 Design Exploration 23 

4.2.1 Design Decisions 23 



4 

4.3 Proposed Design 23 

4.3.1 Design Visual and Description 23 

4.3.2 Functionality 26 

4.4 Technology Considerations 26 

4.5 Design Analysis 27 

4.6 Design Plan 27 

5  Testing 29 

5.1 Testing Process Background 29 

5.2 Interface Testing 30 

5.3 Integration Testing 30 

5.4 System Testing 31 

5.5 Acceptance Testing 31 

5.6 Security Testing 31 

5.7 Results 32 

6  Implementation 32 

6.1 Original Design 32 

6.2 Final Design 33 

7  Professionalism 37 

7.1 Areas of Responsibility 37 

7.2 Project Specific Professional Responsibility Areas 42 

7.3 Most Applicable Professional Responsibility Area 43 

8  Closing Material 43 

8.1 Discussion 43 

8.2 Changes Since Cpre 491 44 

8.3 Conclusion 44 

8.4 Appendices 45 

8.4.1 Team Contract 45 

8.4.2 Alternative Design 50 



5 

8.4.3 Github Link (Full Code Repository) 50 

8.4.4 User Manual 50 

8.4.5 References 55 

 

  



6 

List of figures/tables/symbols/definitions 

 

Figure 1. Caravel Process Image. Source: [6] 

 

 

Figure 2. Caravel Harness. Source: [6] 

 

  



7 

 

Figure 3. Initial Design Sketch. Source: Adapted from [6] 

 

 

 

 

 

 

 

 

 

 

 



8 

 

Figure 4. Initial State Machine Design 

 

 



9 

 

Figure 5. Final State Machine Design 

 

 

Figure 6. Wishbone Model. Source: [7] 

 



10 

 

Figure 7. Bring-up Plan 

 

 

Figure 8. Image of Pinout for ASIC. Source: [8] 



11 

1 Team 

1.1 TEAM MEMBERS 

Constantine Mantas - a Computer Engineering major with an interest in hardware design. 

Through various classwork, internships, and projects, Constantine has gotten experience with 

various programming languages like Java, C, and Python, and computer hardware design with 

technologies like ModelSim, Verilog, and VHDL 

Soma Szabo - a Computer Engineering major, pursuing the Master of Engineering concurrent 

degree program. His classes and work experiences have provided him with knowledge in 

programming techniques, software languages such as Java, TCL, C/C++, Python, and Dart, as 

well as hardware description languages such as VHDL and Verilog. He also has experience with 

computer architecture and related tools such as ModelSim, Vivado, Cadence, and Altium 

Designer (PCB design). 

Courtney Violett - Is a Computer Engineering major. He has worked through a variety of class 

work and projects, both for class and personal projects, has gained experience in programming 

languages such as C, Java, HTML, CSS, computer hardware design, and circuit design. He also 

has experience with tools such as android studio and ModelSim. 

Dawood Ghauri -  a Computer Engineering major with a minor in Physics. His class 

experiences have developed his knowledge with respect to programming experiences in C, C++, 

Java, Python, VHDL, and Verilog 

 

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 

Some of the skill sets required for this project are: 

● Ability to use and debug Verilog/SystemVerilog 

● Ability to set up development environment in Linux 

● Ability to use C to drive testing for Verilog/SystemVerilog components 

● Understand the fabrication process for an ASIC 

 

1.3 SKILL SETS COVERED BY THE TEAM 

All of the required skills are covered by each team member. 

 

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 

mailto:cmantas@iastate.edu
mailto:sszabo@iastate.edu
mailto:cviolett@iastate.edu
mailto:dghauri@iastate.edu


12 

 The Project management style that we will use for this project is an agile style. We began 

the project with a waterfall approach when doing the research, but now that we have begun 

integration of components into the project framework we have begun using an agile methodology 

where each week we go over tasks that have been completed from the previous week, and then 

discuss tasks to complete for that week. 

 

1.5 INITIAL PROJECT MANAGEMENT ROLES 

Role Team Member 

Team Organization Constantine Mantas 

Design Workflow Dawood Ghauri 

Individual Component Design Soma Szabo 

Testing Courtney Violett 

 

2 Introduction 

2.1 PROBLEM STATEMENT 

Our group is designing a process for future students to fabricate a microchip through the Open 

MPW Shuttle program. To do this, we are creating a bring-up and testing plan for chip fabrication 

that will provide a streamline process for fabricating an application specific integrated circuit 

(ASIC). The focus of our design will be to create a test bed for evaluating hardware accelerated 

hashing implementations and act as pioneers using Open MPW for future students wishing to 

create custom ASICs. 

 

2.2 REQUIREMENTS & CONSTRAINTS 

Functional Requirements (Specification): 

● Full Chip Simulation passes for RTL and GL (gate-level) 

● The hardened Macros are LVS and DRC clean 

● The project contains a gate-level netlist for user_project_wrapper at 

verilog/gl/user_project_wrapper.v 



13 

● The hardened user_project_wrapper adheres to the same pin order specified at pin_order  

● The hardened user_project_wrapper adheres to the fixed wrapper configuration specified 

at fixed_wrapper_cfgs  

● XOR check passes with zero total difference 

● The design passes the mpw-precheck 

Resource Requirements: 

● The project repo adheres to the same directory structure in this repo. 

● The project repo contains info.yaml at the project root. 

● Top level macro is named user_project_wrapper. 

● Openlane summary reports are retained under ./signoff/ 

Qualitative Aesthetics Requirements: 

● Not relevant for our project. 

Economic/Market Requirements: 

● Ensuring all technologies used are open-source. No monetary gain from design. 

Environmental Requirements: 

● As we are not in control of the fabrication process itself (managed by eFabless), there are 

not any environmental requirements relevant to us.  

UI Requirements: 

● Our design will not have a UI; therefore, UI requirements are not applicable. 

 

2.3 ENGINEERING STANDARDS 

IEEE Standard VITAL ASIC (Application Specific Integrated Circuit) Modeling Specification - We 

are designing an ASIC using a modeling standard so this will allow us to more clearly communicate 

our design to other engineers. 

IEEE Standard Testability Method for Embedded Core-based Integrated Circuits - We are designing 

an ASIC using a testing standard so this will allow us to more accurately verify our testing process. 

IEEE Standard for Integrated Circuit (IC) Open Library Architecture (OLA)- This is useful for our 

ASIC design because it covers ways for integrated circuit designers to analyze chip timing and 

power consistently across a broad set of electric design automation (EDA) applications. 



14 

 

2.4 INTENDED USERS AND USES 

The primary benefactor of the results of our project will be our customers and specifically our 

advisor and customer Prof. Duwe. His hope is to use the knowledge and example of our project to 

be able to continuously have teams developing microchips through Efabless.  

Another major benefactor of our project will be the preceding team to ours as they will not only use 

our project as an example for their own project. They will also benefit from our in depth 

documentation on how to develop within Efabless, but also on our documentation of the bring up 

process that they will be performing on our chip. 

 

3 Project Plan 

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES 

As we were becoming familiar with the provided design environment, we initially worked in a 

waterfall workflow. However, once we became familiar with building the environment, we worked 

in an agile workflow. We started in a waterfall management style as it has allowed us to become 

more familiar with how to develop within Efabless. Once we all become familiar with it, an agile 

management style will be easier to work in. This will allow us to quickly move through and test 

various components as we implement and integrate them into the larger project. 

What will your group use to track progress throughout the course of this and the next semester.  

This could include Git, Github, Trello, Slack or any other tools helpful in project management.  

We are currently tracking tasks using a Microsoft Teams task board and working collaboratively on 

our codebase using Github. 

What will your group use to track progress throughout the course of this and the next semester.  

This could include Git, Github, Trello, Slack or any other tools helpful in project management. 

 

3.2 TASK DECOMPOSITION 

Design an Open MPW ASIC submission 

1. Setup of eFabless dev environment 

a. Setup Github repo 

b. Clone caravel_user_project template into repo 

c. Setup local linux environment to build project 

d. Test baseline/template project to ensure everything works 



15 

2. Plan what we will design 

a. High level system design 

b. Functionality design for each component 

3. Code components 

a. Verilog development of each component used in the high level design 

4. Test components 

a. Testbenches for each individual component to verify functionality 

b. Potential component specific feedback stage 

5. Bring components together into a system 

a. Put components together in the larger wrapper to create a final system 

b. Test integrated components within the system to verify they are communicating 

correctly.  

6. Test the system 

a. Create testing that will cover all critical areas and ensure functionality of the 

system 

7. Feedback from Dr. Duwe 

a. Ensure the system and components meet expectations. 

b. Revise components, testing, or other aspects and repeat steps 2-6 (based on 

additions/revision) 

8. Submit design to eFabless Open MPW shuttle 

 

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

The main criteria for a successful project is our goal to have a successful candidate for the Open 

MPW Shuttle in order to enter the lottery selection process, where our design may be selected for 

fabrication. Getting to this point will demonstrate that we have gone through the full process that 

leads to asic fabrication. 

 

This requires us to pass precheck and tapeout as defined by Efabless. 

The precheck requirements are as follows. 

 



16 

● Open Source Github Repository 

● Checks: 

○ LICENSE & README 

○ YAML file 

○ Consistency Checks (Logical Data Propagation) 

○ DRC (Design Rule Checking) & LVS (Layout vs. Schematic) checks on the user 

project 

○ XOR check 

○ Chip passes RTL (register transfer language) and GL (gate level) simulations 

○ Gate-level netlist (textual description of components) & hardened user project 

wrapper successfully generated 

● Local precheck 

○ Fast and readily available method 

● Efabless website precheck 

○ The official submission precheck which is much slower and more detailed 

 

In order to pass tapeout our design must be able to harden using the openlane software which 

simulates the full transistor layout of our design. 



17 

3.4 PROJECT TIMELINE/SCHEDULE 

 

Figure 9. Project Timeline GANTT Chart 

 

 

Week starting from 3/21/22 Task 

1  High level design 

2 Begin component design 

3 Component design 

4 Finish component design 

5 Begin component coding 

6 Component coding 



18 

7 (end of 491) Component coding 

8 (beginning of 492) Component coding 

9 Feedback from Dr. Duwe (additional 

component design) 

10 Component coding (if needed) & testing 

11 Component coding (if needed) & testing 

12 Component coding (if needed) & testing 

13 Component testing 

14 Begin bringing components together into a 

system 

15 Bringing components together into a system  

16 Finish bringing components together into a 

system 

17 Testing system 

18 Testing system 

19 Feedback from Dr. Duwe (provide any 

additional testing/implementation) 

20 Testing system & additional implementation (if 

needed) 

21 Testing system & additional implementation (if 

needed) 



19 

22 Testing system & additional implementation (if 

needed) 

23 Finish entire system 

 

3.5 RISKS AND RISK MANAGEMENT/MITIGATION 

Agile projects can associate risks and risk mitigation with each sprint. 

1. Setup of eFabless dev environment - difficulty setting up and installing workstations .6 

 We have already come into considerable roadblocks when setting up our dev environments 

as the information for setting it up is scattered and inconsistent. There is no way to eliminate this 

task as it is critical to do anything for our project. Although there are development tools available 

from eFabless these tools aren’t great for development. There aren't any other alternatives for this 

task. 

2. Plan what we will design - .3 

3. Code components - .75 

 There is no way to eliminate this as we need to come up with code for the project. We are 

able to find some off the shelf solutions as there are free IP’s available with coded components. 

There aren’t really any other alternatives as all the components need to be coded in Verilog. 

4. Test components - .5 

 There is no way to eliminate this task as we need to verify that our components are 

working correctly. There aren’t any ways to get any off the shelf tests as our components will be of 

our own making. There isn’t an alternative solution to this either. This is a critical part of hardware 

design that must be handled to ensure the fabricated hardware will work as expected since there is 

no way of modifying the chip afterwards. 

5. Bring components together into a system - .4 

6. Test the system - .2 

 

3.6 PERSONNEL EFFORT REQUIREMENTS 

Task Total Estimated Person hours 



20 

Setup dev environments 10  per person 

Plan our overall design and each component 20 

Code Components 70 

Test Components 70 

Bring components together into system 70 

Test System 70 

Setting up a dev environment includes us familiarizing ourselves with the eFabless ASIC 

development process. Setting up a Github repository that makes use of an eFabless template 

project. Setting up a linux environment that has all the tools to run through all of the checks and 

tests required for the project. 

Planning the design will include a high level schematic of what components we need to make. 

Schematics for how each component will be implemented with simpler logic modules. 

Coding the components will entail designing Verilog files for every subcomponent. 

Testing each of these subcomponents to ensure proper individual functionality is the initial testing 

components phase. 

Bringing the components together into a system entails bringing all subcomponents together to 

test actual component functionality then hooking all components together to verify system 

functionality. 

Finally testing incremental functionality of the system will ensure that once everything is put 

together our final product works as intended. 

 

3.7 OTHER RESOURCE REQUIREMENTS 

None, as this is a purely digital project. However, proceeding teams will need tools such as wave 

form analyzers and generators to be able to test the proceeding teams designs. 

 



21 

4  Design 

4.1 DESIGN CONTEXT 

4.1.1 Broader Context 

The communities that are being designed for are primarily students that will be using our project as 

an example, and for our clients/professors that will be seeing the validity of having this as future 

senior designs. It also will address the safety and welfare of the teams that will be coming after us 

as we will be making sure that their health and safety are being protected.  

List relevant considerations related to your project in each of the following areas: 

Area Description Examples Considerations 

Public 

health, 

safety, and 

welfare 

How does your project affect the 

general well-being of various 

stakeholder groups? These groups 

may be direct users or may be 

indirectly affected (e.g., solution is 

implemented in their communities)  

Increasing/reducing 

exposure to pollutants and 

other harmful substances, 

increasing/reducing safety 

risks, increasing/reducing 

job opportunities 

During the bring up 

process there is risk of 

injury if one of them 

components serious 

malfunctions. Reducing 

those risks is a priority. 

Global, 

cultural, and 

social 

How well does your project reflect 

the values, practices, and aims of the 

cultural groups it affects? Groups 

may include but are not limited to 

specific communities, nations, 

professions, workplaces, and ethnic 

cultures. 

Development or operation 

of the solution would 

violate a profession’s code 

of ethics, implementation 

of the solution would 

require an undesired 

change in community 

practices 

This process we aim to 

develop will make it far 

more feasible for groups of 

students to develop and 

fabricate their own ASICs 

which will have long 

lasting benefits to the 

future of ASIC design. 

Economic What economic impact might your 

project have? This can include the 

financial viability of your product 

within your team or company, cost 

to consumers, or broader economic 

effects on communities, markets, 

nations, and other groups. 

Product needs to remain 

affordable for target users, 

product creates or 

diminishes opportunities 

for economic 

advancement, high 

development cost creates 

risk for organization 

It may lead to more 

efficient ASIC design in the 

future which could lead to 

many more ASIC projects 

entering the market and 

shaking the technological 

field. 

 

4.1.2 User Needs 

Students need a way to understand how to create an ASIC and get it fabricated by eFabless, because 

as it stands now there isn’t much cohesive documentation on how to do so.  



22 

Prof/client needs a way to demonstrate how to have students fabricate their own ASICs, because 

they want to understand the feasibility of having a senior design group every year making their own 

ASIC’s. 

 

4.1.3 Prior Work/Solutions 

Because most of our work for this project is focused around the complicated nature of fabricating 

an ASIC we plan on finding publicly available VHDL IP that we can use in our design. We plan to 

make custom parts in the design where time allows but most of the uniqueness of our design will 

come from how the design interacts with the chip harness. Our highest priority is having a 

functional ASIC design submission that can be selected with as much uniqueness to design as we 

can fit in our time frame.  

Unique components we plan on designing for example is an accelerated adder design that includes 

a SHA-1 hash. 

Advantages 

● More space constrained to meet the requirements 

● Application specific design for lower power consumption  

Disadvantages 

● Simple design model may make us less likely candidates in the selection process 

 

4.1.4 Technical Complexity 

The design for a SHA-1 ASIC requires us to build all auxiliary components and correctly integrate 

our accelerated SHA-1 hasher into the caravel harness.  The application of the algorithm is 

explained in the cited research above. 

Finally the compressor will be composed of 4 types of computation circuits that are all performing 

various levels of bit addition in order to complete the SHA-1 hash. 

The most complicated part of all of this however will be integrating the design within the eFabless 

caravel harness in order to submit a design that can actually be fabricated into an ASIC. This 

requires multiple levels of testing and port alignment to make sure that the design is fully 

functional within the harness. 

 



23 

4.2 DESIGN EXPLORATION 

4.2.1 Design Decisions 

One key design decision that has been made is to not include a random number generator on the 

design as we have a limited amount of chip space and would add an unnecessary layer of 

complexity to our design. Another design decision that had to be made was the type of adder. We 

decided to go with the carry lookahead adder in our original design as this type of adder was shown 

through the synthesized Verilog to be the least expensive in terms of space. Hardening and 

precheck requirements were passed and feasibility/efficiency was determined to be met in our local 

environments. However, with the changes in the eFabless process, the area constraints were altered 

to our detriment. As such, we had to alter our design to use a SHA-1 IP instead which utilized a pre-

synthesized carry lookahead adder instead of our custom implementation. This resulted in us 

changing the overall scope of the design implementation from a Bitcoin mining accelerator to a 

hardware hashing accelerator.  

Another area of the design was the layout of the components on the chip. The specific placement of 

the components will be handled by eFabless tools; however, there are several options when it 

comes to those tools. Once we implemented the components of our design, we determined the best 

ones that fit into our design. 

 

4.3 PROPOSED DESIGN 

4.3.1 Design Visual and Description 

Below is our high level design of the cryptographic hash function (SHA-1). This is based on the 

research paper of the original SHA-256 hasher. It consists of a SHA-1 hash unit used to compute the 

new hash of the block and output the valid 160-bit hash to the management SoC. Otherwise, 1 will 

be added to the nonce and the hash will be recalculated. 

 



24 

 

Figure 10. SHA-1 Process Overview. Source: [9] 

 

 

To store the block header (512-bit input to the SHA-1 modules) we will have 2 types of registers. 

Ones that are 32-bit wide to store the version, timestamp, target, and nonce along with others that 

are 160-bit wide to store the hash of the previous block and Merkle root. These will be populated 

with data coming from the management SoC through the wishbone bus. A high level state machine 

diagram for the SHA-1 hardware accelerator is shown below with the SHA-1 computation state and 

target check being broken down in the diagram above. 

 



25 

 

Figure 11. SHA-1 Computation State Diagram 

 

 

Below is an example of how an arbitrary design (left) would be integrated into the caravel harness 

(middle), resulting in a complete design that can be fabricated and function as an ASIC (right). 

 

 

Figure 12. User Project and Caravel Harness Distinct. Source: [6] 



26 

 

 

4.3.2 Functionality 

The design is intended to take in a previous hash input and calculate the next hash of a blockchain 

by running through various nonce values. The current design seems to satisfy all the functional 

requirements of the hashing process as demonstrated in this picture again. 

 

Figure 13. SHA-1 Process Overview. Source: [9] 

 

 

4.4 TECHNOLOGY CONSIDERATIONS 

There are a wide variety of hardware design tools available for digital AISC developers such as 

ModelSim, Vivado, Cadence, and more. These allow hardware designs to be simulated, synthesized, 

and run through checks such as DRC and LVS. With all this, the logic design can be translated to a 

physical layout that can be used to fabricate a chip. The Open MPW shuttle projects from eFabless 

rely on their own tools for submitting a valid chip design; thus, our team was constrained to 

learning, understanding, and using the provided Caravel User Project as a basis for our design. The 

logic and layout synthesis tools were OpenLane and the SkyWater 130 Process Design Kit was used 

for the standard cells in our design. 



27 

The largest tradeoff in using these tools was the learning curve and the correct setup of the local 

environments so everyone on the team could contribute to and test the design. Another challenge 

was communicating with the eFabless support teams in case of any errors. On the other hand, once 

the tools were correctly set up, the design process became much simpler and provided a streamline 

benchmark that ensured our project was acceptable for submission. Since the choice in hardware 

design tools were constrained, we did not have the option to consider alternatives and committed 

to understanding the provided software and hardware. 

 

4.5 DESIGN ANALYSIS  

The SHA-1 hardware accelerator ASIC design has completed the testing and simulation stages. It is 

currently in the verification phase on eFabless. These testing and simulation stages include logic 

and gate level simulations as well as connecting logic analyzer testing points in the design to debug 

and bring up the chip post fabrication. To ensure a round trip of the entire design process can be 

completed, we ran individual subcomponents of the main design through the local environment 

prechecks. This confirmed that a custom design can be created and translated to a physical layout 

within the user project area of the chip. Therefore, we are confident that our final hardware 

accelerator ASIC design will be successfully synthesized and pass the verification phase on eFabless. 

There are many optimizations and design choices we considered while implementing the chip. 

These included multiple SHA-1 hashing cores capable of simultaneously working together to 

compute more hashes that may be valid for the specified block. This would speed up the mining 

process but was found to increase the verification complexity, add more signals to bring out to the 

logic analyzer, and most importantly, take up too much physical space in the user project area. 

With the unforeseen changes in the eFabless manufacturing process, the goal shifted to create a 

simpler version of a single hashing core with lots of debug options to ensure it works correctly. We 

performed as many pre-silicon tests as possible to ensure the fabricated chip will behave as 

expected and will have the ability to determine what, if anything, goes wrong through proper 

debug functionality. If selected by eFabless, more complex iterations of our design could be created 

and sent for fabrication by future senior design teams. 

 

4.6 DESIGN PLAN 

Our design plan began with finding a suitable IP for the SHA-1 that makes up the core of our 

design. Once fully tested and verified that the IP functions correctly we integrated it into the user 

project area and began the process of changing adders within the hasher to be able to demonstrate 

different adder efficiencies. As mentioned previously, with the changes to the eFabless 

manufacturing process within the Skywater foundry fabrication node, we were unable to follow 

through with this original design plan direction. We altered the design to utilize the pre-

synthesized adders within the SHA-1 IP. Each component will be tested separately from the overall 

design to ensure that they are functioning correctly before being integrated into the user area. 

Once a new component is integrated into the user area the entire system will be tested again to 

verify that the new component has been integrated correctly. Finally once every component has 



28 

been tested and integrated into the user area the entire system will be tested to ensure that 

everything is working correctly within the Caravel Harness.   

Once our design for the SHA-1 hashing ASIC is integrated into the Caravel Harness, it will be reset 

and held in a waiting for input stage until a logic analyzer signal is asserted high. This will occur 

when the firmware sets bit 0 of the logic analyzer to 1 and the reading of the block header will 

follow. This state requires bit 0 of the logic analyzer to stay high and will read 32-bit data fragments 

from the wishbone bus, storing the input into the corresponding register for the block header. A 

handshake will be performed to ensure the data was stored successfully and the next block of data 

is ready to be stored. Once the entire block header is stored, bit 0 of the logic analyzer must be 

deasserted and the SHA-1 IP core will begin computing the output hash or digest. An output valid 

bit will be set and the digest will be compared with the target. If the digest is less than the target, 

the valid output hash will be sent over the wishbone bus to the management SoC and stored in a 

variable. This will be compared to the expected output hash to ensure correctness. While this 

computation occurs in the user project area, various stages of the computation will be probed using 

the logic analyzer. These include the nonce to ensure it is incrementing correctly, the results of 

various adders within the SHA-1 module design, and the digest output. This ensures our design is 

functioning correctly and can debug post fabrication. 

 

Module Constraints: 

I. N-bit registers 

A. Able to read stored values as output  

B. Able to take as input n bit values and write new values to register to store 

C. Able to toggle write ability on and off with single bit control 

D. Able to reset registers to stored values being set to NULL 

II. Nonce Incrementer 

A. Takes a single bit input each cycle to determine whether or not it will increase the 

nonce value. Acts similar to a write enable control input. 

B. Initialized value of 0 and each cycle it receives a 1 input it will increase the stored 

value by exactly 1. 

C. Outputs the stored nonce value 

D. Able to be reset with a reset control 

III. SHA-1 IP 

A. Outputs a 160-bit hash value of the input where it has run through the SHA-1 hash 

twice. The SHA-1 definition we use is based on the National Institute of Standards 



29 

and Technology definition and citations here 

https://csrc.nist.gov/glossary/term/sha_1. 

B. Takes a 512-bit input. 

 

5  Testing  

The pre silicon bring-up of the ASIC will rely heavily on testing to ensure the design is functional. 

This is a portion of the requirements for our project, so we must ensure the test plan is thorough. 

Otherwise, the fabricated chip may behave unexpectedly without knowing the root cause. A 

successful bring-up process will involve lots of testing. Specifically, performing simulation tests 

focusing on edge-cases and analyzing C test benches and waveforms at the RTL and gate level to 

ensure correct functionality. A more detailed analysis of our test plan is discussed through this 

document. 

 

5.1 TESTING PROCESS BACKGROUND 

Tools used for testing our design: 

● Built in logic analyzer and wishbone communication of the Caravel harness allows us to 

develop test cases for each unit in C code and testbenches in Verilog. Using this we can 

attach virtual probes to each unit and run tests on them. 

○ Give input and specify expected output  

● Waveform simulation output files at the RTL and gate level. These will be used to confirm 

functionality of each module before integrating into the design. 

● OpenLane is software that will be used to test that all components fit within the limited 

space of the design, check that our resource allocation is within specifications of the 

harness, as well as show how they expect to be mapped out 

● Verilator/ModelSim is also being used to test the IP for a SHA-1 hasher to determine its 

correctness and security.  

 

https://csrc.nist.gov/glossary/term/sha_1


30 

5.2 INTERFACE TESTING 

 

Figure 14. Wishbone Model. Source: [7] 

 

DUT (Designs Under Test) will be specified within the testbenches written in Verilog and C on the 

“Wishbone Master” side (i.e., the firmware). Along with the wishbone, another interface which 

assists in the testing process is the Logic Analyzer. This helps to drive inputs and receive outputs 

from the master and slave respectively. Some important ports to consider above are the CLK_I (the 

synchronous clock), DAT_I/O (data input/output), and ACK_I/O (acknowledge port). The clock 

allows the testbench (on the firmware side) to supply our project with a simulated clock, data 

input/output allows data communication between both the firmware and the user project area, and 

the acknowledge port serves as a handshake between both sides to ensure proper data 

communication. 

 

5.3 INTEGRATION TESTING 

The most critical integration path will be the SHA-1 hashing unit as it is made of many different 

subcomponents of adders. It is also the main functionality of the design and if it is not working 

then the design itself is somewhat meaningless. Another critical path will be the comparator as it 

will be comparing the hashed NONCE to the hashed target value. It is critical as even if we are 

hashing correctly if the comparator isn’t working the design will also fail. These integration 

pathways will be tested using test cases in c that use the wishbone and logic analyzer on the 

management SOC of the Caravel harness to determine the values that are being generated by both 

integration paths. Before they are integrated together, each of the integration paths will be tested 

on their own to validate their individual functionality. The test benches themselves also generate 



31 

waveforms that allow us to go through and verify/debug values of different components of our 

design. 

 

5.4 SYSTEM TESTING 

System level testing will run test cases structured to look similar to expected use cases. For 

example, we will specify a target and a previous hash as inputs to our adder and run them through 

an online hashing tool to get an expected output for our miner. In our test cases we will check the 

outputs of each cycle of hashing. If this is functioning as expected for a sufficient number of test 

cases then we feel that our design will be functional. This is a critical part of our design and ties 

into the requirements since it revolves around the successful bring-up of an SoC. 

Tools: 

● Built in logic analyzer and wishbone communication of the Caravel harness allows us to 

develop test cases for each unit in C code. Using this we can attach virtual probes to each 

unit and run tests on them. 

○ Give input and specify expected output 

 

5.5 ACCEPTANCE TESTING 

We will be demonstrating the non-functionality of our design through OpenLane. OpenLane is 

software used by Efabless to determine if the design is within the specifications of the  Caravel 

harness. This test is also required to submit the design to eFabless. We will be verifying the 

functionality of our design through test cases and waveforms. The test cases will be in C and be 

using the wishbone and logic analyzer on the harness to check correct values. We will also be using 

waveforms that are generated during the test benches to manually verify that the correct values are 

being achieved. We also will be running through the test benches and waveforms with our 

advisor/client during the rest of the design process. The waveforms and test benches must also be 

submitted to Efabless to verify the functionality of our design for them to fabricate it. 

 

5.6 SECURITY TESTING 

The only security concern that is present in our project is with the imported IP that we are using 

for the SHA-1. The security risk associated with using an imported IP in the design is if there are 

any additional components of it that would give a third party access to it somehow, or if it would 

cause damage to the design when powered up. We are addressing this by going through each of 

the design files to determine if they are strictly necessary to what we will be using it for as well as 

testing the IP thoroughly before integrating it into our system. The license on the IP allows us to 

make changes to it so if we do find some unnecessary or malicious addition we are able to remove 

them. We also will be doing a basic search of the author of the design to determine if they are a 



32 

trustworthy source. 

 

5.7 RESULTS 

The results of our testing will come in two forms: one should be in a text reply that all of our C test 

cases have passed as expected, and the second will be an output of a waveform file for each 

component being tested that will show how every variable changes throughout the test cases. We 

can design our test cases based on the requirements we need to meet so that we can ensure 

compliance and demonstrate sufficient functionality. For example in an adder we can show test 

cases doing basic addition and subtraction as well as edge cases such as where we may expect 

overflow. 

Example waveform of testing the custom adder: 

 

Figure 15. Custom Adder Waveform 

 

 

6  Implementation 

6.1 ORIGINAL DESIGN 

With the original Bitcoin mining ASIC design, the plan was to further test the functionality of the 

IP to ensure it functioned as intended and did not present security issues. Then, we had to 



33 

integrate it into our project wrapper and harden it to ensure it is within the space constraints of the 

project specifications. The Verilog code and RTL simulations are complete for the finite state 

machine (FSM) and the SHA-256 module. Unfortunately, the hardening process could not be 

completed in time for the MPW-7 submission deadline on September 12th due to space and layout 

constraints of the user project area. Thus, an alternate smaller design quickly needed to be created 

to meet the requirements to be able to reach tapeout. Keeping our project similar to its intended 

goal while shrinking the size of the physical design considerably resulted in a SHA1 hardware 

accelerator module implementation which will be discussed in the next section. 

 

6.2 FINAL DESIGN 

The SHA1 hardware accelerated hasher is the final design that could go through the entire MPW 

submission process including hardening, passing RTL simulations, gate-level (GL) simulations, and 

passing the final precheck. To implement this, a SHA-1 hashing module IP was used and integrated 

into a custom FSM allowing for communication through the logic analyzer (LA) ports and the 

Wishbone bus. The LA bit mappings are shown in the Figure. Reference Figure 11 for the FSM. 

 

Figure 16. Custom Adder Waveform 

 

 

 

 

With the Verilog design complete, testbenches had to be created in Verilog and C and RTL 

simulations had to be run to ensure correct functionality. After successful RTL simulations, the 

design had to be hardened which was a highly time consuming process. OpenLane had to be 

configured perfectly to successfully translate the high-level Verilog code to standard cells used in 

the physical layout of the user project area. The hardened user project area is shown below at 40μm 

and 2μm scales to illustrate the scale and density of the design. 



34 

 

Figure 17. Hardened User Project Area (40 μm) 

 



35 

 

Figure 18. Hardened User Project Area (2 μm) 

 

The hardened user project area was placed inside the user project wrapper which connected the 

power lines, management SoC, and any I/O to our custom design. There were many obstacles 

during hardening mainly due to sparse documentation and feedback from the tools used. To 

resolve this, we reached out to the eFabless Slack support team to ensure our design could harden 

and pass precheck. The user project wrapper layout is shown below as well as a snippet of precheck 

results. 



36 

 

Figure 19. User Project Wrapper Layout 

 

 

Figure 20. Precheck Pass Results 

 

The final part involved ensuring that GL simulations functioned correctly. The main difference 

between RTL and GL simulations was that our design had to be manually reset using the LA ports 

prior to using it. A GL simulation waveform for the SHA1 hardware accelerated hasher is shown 

below. 

 



37 

 
Figure 21. sha1_top_test2 GL simulation showing all correct outputs (digests) using “abc” 

and “abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq” as input. 

 

All this allowed us to reach tapeout, submit the design files to eFabless by September 12th, and wait 

for our ASIC to be manufactured before physically testing it on an FPGA board. 

 

7  Professionalism 

This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone 

Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of 

Engineering Education Vol. 28, No. 2, pp. 416–424, 2012 

 

7.1 AREAS OF RESPONSIBILITY 

Area of responsibility 

 

 

Definition 

 

NSPE Canon 

 

IEEE 

Work Competence 

 

Perform work of high 

quality, integrity, 

timeliness, and 

professional 

competence. 

Perform services only 

in areas of their 

competence; 

Avoid deceptive acts. 

5. 

to improve the 

understanding of 

technology; its 

appropriate 

application, and 



38 

potential 

consequences;  

 

6. 

to maintain and 

improve our technical 

competence and to 

undertake 

technological tasks for 

others only if qualified 

by training or 

experience, or after 

full disclosure of 

pertinent limitations;  

 

7. 

to seek, accept, and 

offer honest criticism 

of technical work, to 

acknowledge and 

correct errors, and to 

credit properly the 

contributions of 

others;  

 

10. 

to assist colleagues 

and co-workers in 

their professional 

development and to 

support them in 

following this code of 

ethics. 

 



39 

Financial 

Responsibility 

 

Deliver products and 

services of realizable 

value and at 

reasonable costs. 

 

Act for each employer 

or client as faithful 

agents or trustees. 

 

Communication 

Honesty 

 

Report work 

truthfully, without 

deception, and are 

understandable to 

stakeholders. 

Issue public 

statements only in an 

objective and truthful 

manner; Avoid 

deceptive acts. 

3. 

to be honest and 

realistic in stating 

claims or estimates 

based on available 

data;  

 

Health, Safety, Well-

Being 

Minimize risks to 

safety, health, and 

well-being of 

stakeholders. 

Hold paramount the 

safety, health, and 

welfare of the public. 

1. 

to accept 

responsibility in 

making decisions 

consistent with the 

safety, health, and 

welfare of the public, 

and to disclose 

promptly factors that 

might endanger the 

public or the 

environment; 

Property Ownership 

 

Respect property, 

ideas, and 

information of clients 

and others. 

Act for each employer 

or client as faithful 

agents or trustees. 

8. 

to treat fairly all 

persons and to not 

engage in acts of 

discrimination based 

on race, religion, 

gender, disability, age, 

national origin, sexual 

orientation, gender 

identity, or gender 

expression; 



40 

 

9. 

to avoid injuring 

others, their property, 

reputation, or 

employment by false 

or malicious action; 

 

Sustainability 

 

Protect the 

environment and 

natural resources 

locally and globally. 

 

 1. 

to accept 

responsibility in 

making decisions 

consistent with the 

safety, health, and 

welfare of the public, 

and to disclose 

promptly factors that 

might endanger the 

public or the 

environment; 

Social Responsibility 

 

Produce products and 

services that benefit 

society and 

communities. 

Conduct themselves 

honorably, 

responsibly, ethically, 

and lawfully so as to 

enhance the honor, 

reputation, and 

usefulness of the 

profession. 

2. 

to avoid real or 

perceived conflicts of 

interest whenever 

possible, and to 

disclose them to 

affected parties when 

they do exist; 

 

4. 

to reject bribery in all 

its forms;  

 

 



41 

Each of the 10 IEEE codes fit under one of the categories of the NSPE version except for the 

financial responsibility category where IEEE seems to have no code taking this into consideration. 

The IEEE code of ethics also seems to focus more on ensuring workers uphold high standards of 

integrity, responsibility, equality, respect, credit association, and work in a safe, non-

0discriminatory environment. 

Each entry is a rule in the IEEE code of ethics placed where they would correspond to their NSPE 

counterparts. 

Work Competence: Focuses on collaborating with others for gaining high quality 

experience and maintaining as well as continuously improving our technical knowledge. 

Respectfully reviewing, critiquing, and giving credit for the work of others is also essential for 

improving abilities as well as maintaining integrity and respect. 

 Financial Responsibility: None 

 Communication Honesty: Focuses on being truthful and practical when addressing 

individuals, team members, or clients. Additionally, when using data, it is important to ensure 

competent, concise, and effective communication.  

 Health, Safety, and Wellbeing: Making sure to minimize any potential risks to the end 

users or stakeholders, whether they be physical, emotional, or their general welfare. These risks can 

come during the development and later use of our product and we will need to take into 

consideration resources that they will be able to use to minimize those risks when we are not 

present for them. 

 Property Ownership: Treat all people fairly and equally. Avoid injuring others property or 

reputations. 

 Sustainability: Accept responsibility for how the product you are designing may affect the 

environment. 

 Social Responsibility: Avoid conflicts of interest and reject coercion in all of its forms. 

Work Competence: IEEE code has four rules that correspond to work competence in a 

more focused way on the engineering integrity of products produced by an engineer at work.  

 Financial Responsibility: The IEEE code of ethics does not have anything that would go 

along with the NSPE area of Financial Responsibility, it instead focuses more on other areas such as 

Work Competence. 

 Communication Honesty: The wording for these two versions is different but the basic 

message is very much the same. 

 Health, Safety, and Wellbeing: Instead of focusing on minimizing health risk there is a 

greater focus on accepting responsibility for potentially harmful actions. 

 Property Ownership: IEEE has a lot more about respecting the differences amongst 

people than they do about property. 



42 

 Sustainability: Sustainability is only seen at the very end of one of the codes of conduct, 

rather than as its own entire code. This code overall is actually more applicable to Health, Safety, 

and Wellbeing. 

 Social Responsibility: IEEE code has two rules that correspond to social responsibility in 

more focused forms like rejecting bribery and disclosing perceived conflicts of interest. 

 

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS 

Work Competence: This is an extremely relevant part responsibility for our project as we 

have to ensure that our work is of great quality to pass all the checks eFabless has put in place for 

their OpenMPW shuttle. The checklist given by eFabless has parts like the design passing precheck, 

a concise project repo with a great directory structure, and proper naming conventions. Our team 

is performing at a level of “High” in this area as we set up our local workflow structure and get 

started on our application for the ASIC. 

 Financial Responsibility: This applies to our project professionability context in that we 

may be given tools that our client has paid for to be better able to complete the project for them. 

However, we don’t have a financial responsibility in delivering the end product to our client.. Due 

to this, there isn’t much that applies for financial responsibility to the context of our project. Our 

team is performing highly for our financial responsibilities as we haven’t incurred any financial 

costs for our project.  

 Communication Honesty: This greatly applies to our project because we must all 

communicate effectively while ensuring there is minimal ambiguity regarding the tasks we have 

completed or will work on. Our team values honesty and ensuring that everyone is included as well 

as supported as the tasks are performed. Our team is performing highly in this area because we 

have frequent meetings, assign tasks evenly, and have proof of the work all members have 

completed. Furthermore, each member of the team understands the importance and value of this 

professional responsibility. 

 Health, Safety, and Wellbeing: This only applies to our project in specific portions. That 

aspect of the project is the bring up process. During the bring up, there will be a mild risk to the 

safety and wellbeing of the individuals doing the bring up as they will be a separate group. The 

team thus far has been performing at a high level for this area as we have been keeping in mind the 

information that will be required for the bring up. We have also made it a top priority to make the 

instructions and information about the processes as clear and digestible as possible.  

 Property Ownership: This area may be somewhat applicable to our team because there 

has not been any property or proprietary information we had to deal with, but our chip design may 

include intellectual property (IP) of others which we will have to take into account. Apart from 

licensing our own work and ensuring the design IP is accounted for, there is no need for handling 

confidential or sensitive information. Therefore, our team is performing medium because there will 

not be many applications for this responsibility area and can handle it well if needed. 



43 

 Sustainability: This is not applicable to our team as there is no core sustainability 

component that our project is addressing. As eFabless is directly handling the fabrication 

component, and our chip is a very small part of the silicon that will be fabricated, there is a 

negligible impact on the environment that our project will have. Additionally, as the project is 

sponsored by Google, the SkyWater fabrication facility is focused heavily on making sure their 

practices are rooted in sustainable practices. To summarize, our project has no core sustainability 

component, and the sustainable components related to the fabrication are handled directly by 

eFabless; therefore, this is not applicable (N/A) to our team. 

 Social Responsibility: This area is somewhat applicable to our project as depending on 

how well we are able to document the process of building and getting a chip fabricated through 

Efabless it will be a great service to future groups doing this exact thing. In terms of our team's 

performance in this area we are performing at a high level. We have been able to compile an 

immense amount of resources for being able to create a user project within the context of the 

caravel harness and user project space. We have been condensing this information as we have 

examined it to give later groups an easier and more efficient way of digesting this information. We 

will be continuing this process throughout the project so as to maintain a high level of performance 

for this area. 

 

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA 

Communication Honesty is one area of professional responsibility that is extremely important for 

our project above all other areas. As a team of four, working closely with the numerous 

interconnected parts of this project, it is important that we communicate with one another about 

both research done and work implemented as it will likely directly impact another team member’s 

area of specialization within the project. Our team has demonstrated this extensively over the past 

few weeks by having weekly client meetings where we discuss our direction as well as team 

meetings where we focus more in depth about our project’s components. One of the biggest 

impacts recently that we found from this responsibility was the interconnection of understanding 

of the wishbone, caravel harness, workflow, and logic analyzer parts of the project. By continuing 

our commitment to this responsibility, we will be able to more efficiently and effectively implement 

each of our parts related to the project and meet the deadline given to us by eFabless.  

 

8  Closing Material 

8.1 DISCUSSION 

The result our team hopes for is to have a submitted ASIC design be selected by eFabless for their 

Open MPW shuttle, manufactured, and then once we receive test its functionality to ensure that it 

works as intended. 



44 

In our specific design case we hope that our hardware accelerated SHA-1 ASIC is able to be placed 

onto an FPGA board and we are able to not only verify that the hash was done correctly, but also 

that it has a faster hashing time then non hardware implementations of SHA-1. 

8.2 CHANGES SINCE CPRE 491 

Our biggest change since Cpre 491 is that we had to completely redesign our ASIC submission 

because during the hardening process we found that our original design was not within the space 

constraints that Efabless provides for submission. 

 

We shifted from a complicated bitcoin mining asic which had many parts that simulate the full 

bitcoin mining process to a much simpler accelerated adder that would meet the space constraints 

set by Efabless for shuttle submission. 

 

We completed and tested this design and turned in our submission to Efabless. We have passed 

precheck and tapeout on the shuttle and are now waiting for review from the Efabless shuttle team 

to determine if we have been selected for fabrication or not. 

 

8.3 CONCLUSION 

The work we have done so far is researching the Open MPW submission process, previous 

submissions, provided workspace, and constraints. We have selected a design, researched about 

bitcoin mining, figured out what components would be needed to make the design functional and 

what their constraints are. We then had to drastically alter our design to meet the changed 

requirements for the MPW shuttle. We have devised a testing plan for the digital design before 

submitting the ASIC as well as a plan for once the ASIC is manufactured and sent back to us. We 

have designed a simple adder in the new workspace to demonstrate that we do have the ability to 

design and test components successfully within this new workspace. We have selected the IP we 

will use for our SHA-1 hashing, integrated it, implemented our new design, and submitted it.  

The rest of the time spent on this course has been helping the group that is following us with their 

own ASIC design, and going through the additional testing of our ASIC that Efabless has specified. 

We will also be waiting to hear the final decision from Efabless, and making sure that the next team 

understands the bring up processes that we have developed. Over the course of this senior design 

project we have had to overcome many challenges pertaining to the Efabless workspace as well as 

changing requirements for the MPW 7 shuttle. We have been able to overcome these challenges as 

a team and managed to pioneer a method for student led groups to design and fabricate their own 

ASIC designs. 

 



45 

8.4 APPENDICES 

8.4.1 Team Contract 

Team Name: Digital ASIC Designers 

 

Team Members: 

1) Constantine Mantas      2) Soma Szabo 

3) Dawood Ghauri                                         4) Courtney Violett 

 

Team Procedures 

1. Day, time, and location (face-to-face or virtual) for regular team meetings: 

a. Client Meeting: Friday in Durham with Duwe (1 pm; 1 hour). 

b. Team Meeting: Weekend meeting (variable; 1 hour). 

 

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-mail, 

phone, app, face-to-face): 

a. Discord 

b. Snapchat 

c. MS Teams 

d. MS Planner 

 

3. Decision-making policy (e.g., consensus, majority vote): 

a. Majority vote with professor Duwe making a decision if there is a tie. 

 

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be 

shared/archived): 

a. Constantine will be the main record keeper with everyone else adding to it as they feel 

necessary. 

b. Times will be maintained by each individual in a shared excel spreadsheet which will 

also detail what each person has accomplished in the week. 



46 

 

Participation Expectations 

1. Expected individual attendance, punctuality, and participation at all team meetings: 

a. Face to face meetings: 

i. Be as punctual as possible, especially when meeting with professors or other 

people outside of our team. 

ii. Try to arrive a few minutes early or as discussed. 

b. Online meetings: 

i. Similar to face-to-face but could have a few minutes (max 5) of slack. 

 

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines: 

a. Ensure they are completed or worked on before the deadline. 

i. If someone is having issues, they should let the team know as soon as possible. 

b. Preferably complete work to a high standard and follow guidelines, specifically when 

completing issues on GitHub and merging branches. 

 

3. Expected level of communication with other team members: 

a. Ensure effective communication about all project work and meetings. 

b. As stated previously, if any issue arises, let team members know as soon as possible. 

 

4. Expected level of commitment to team decisions and tasks: 

a. Varies with task urgency. High urgency tasks will be expected to be completed within a 

week while others may require more time to explore solutions. Communicating progress 

weekly is essential to demonstrate commitment. 

 

Leadership 

1. Leadership roles for each team member (e.g., team organization, client interaction, individual 

component design, testing, etc.): 

 



47 

Role Team Member 

Team Organization Constantine Mantas 

Design Workflow Dawood Ghauri 

Individual Component Design Soma Szabo 

Testing Courtney Violett 

 

2. Strategies for supporting and guiding the work of all team members: 

a. Make use of human resources including asking team members and professor Duwe for 

assistance when stuck. 

b. Communicate roadblocks as quickly as possible so that the team can work together to 

find a solution. 

c. Use issues on GitHub and planned tasks so we know what each member is working on 

and no duplicate work is done. 

 

3. Strategies for recognizing the contributions of all team members: 

a. Assign weekly tasks that set expectations for each member with the usual expectation 

being that they be finished unless a roadblock occurs. 

b. Can verbally praise people for their work. 

 

Collaboration and Inclusion 

1. Describe the skills, expertise, and unique perspectives each team member brings to the team. 

Skills/Experience/Perspectives Team Member 

VHDL coding experience, Github workflow, 

effective communicator, leadership experience in a 

hardware design environment (TA for 381), 

Embedded systems industry experience 

Constantine Mantas 



48 

VHDL, Verilog, UNIX/Windows Server 

Management, Undergraduate Research Experience, 

Leadership Skills from TA (381).  

Dawood Ghauri 

VHDL, Verilog, scripting software, GitHub 

workflow, effective communicator, storage 

industry experience, PCB design 

Soma Szabo 

VHDL, verilog, GitHub workflow, Hardware 

design in 381, effective communicator. Experience 

in making WebDev applications, experience 

working with embedded side projects(Arduino) 

Courtney Violett 

 

2. Strategies for encouraging and support contributions and ideas from all team members: 

a. Inquisition: Ask each other questions about what implementations and ideas they may 

have so all people get a good understanding of how things work. 

b. Inclusion: Encourage members to speak up and take on tasks or discuss what they think 

are good action paths. 

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a team 

member inform the team that the team environment is obstructing their opportunity or ability to 

contribute?) 

a. Contact team members through any of the means of communication for most issues if it 

requires professor Duwe’s attention make sure to @ him and team in Microsoft Teams. 

 

Goal-Setting, Planning, and Execution 

1. Team goals for this semester: 

a. Design and begin coding of a submittable and likely to be selected Open MPW chip 

design. 

b. Learn more about chip design, firmware, and the process of fabricating an integrated 

circuit. 

c. Work effectively as a team and resolve conflicts peacefully. 

 

2. Strategies for planning and assigning individual and team work: 



49 

a. Weekly progress evaluations and task assignments at meetings, and try to assign tasks 

relevant to people’s strengths with potentially multiple people working together on more 

difficult tasks. 

 

3. Strategies for keeping on task: 

a. Task board with assignments and deadlines in Microsoft Teams group. 

b. Remind team members of any tasks if they seem behind schedule or drifting off topic. 

 

Consequences for Not Adhering to Team Contract 

1. How will you handle infractions of any of the obligations of this team contract? 

a. Reach out through a means of communication to ensure expectations are understood and 

infractions are minimized in the future. 

 

2. What will your team do if the infractions continue? 

a. If they do not have a strong reason for the infraction, the team will reach out to professors 

like Duwe or Shannon to discuss consequences. 

 

*************************************************************************** 

a) I participated in formulating the standards, roles, and procedures as stated in this contract. 

b) I understand that I am obligated to abide by these terms and conditions. 

c) I understand that if I do not abide by these terms and conditions, I will suffer the 

consequences as stated in this contract. 

1) Constantine Mantas                DATE 2/12/2022 

2) Soma Szabo                 DATE 2/12/2022 

3) Dawood                                                                                              DATE 2/12/2022 

4) Courtney Violett                DATE 2/12/2022 

 

 



50 

8.4.2 Alternative Design 

Our original ASIC design was for a SHA-256 Bitcoin mining accelerator. However, due to changes 

in the eFabless manufacturing process with respect to space constraints, we had to change our 

project. Our updated ASIC design is a SHA-1 hardware accelerator. More details can be found in 

sections 6.2, 4.5, and 4.6. 

 

8.4.3 Github Link (Full Code Repository) 

https://github.com/WebKingdom/bitcoin_asic  

 

8.4.4 User Manual 

Our user manual is focused around our primary objective of setting up future groups to be able to 

design their own asics using the Efabless Open MPW shuttle framework. This manual outlines the 

steps groups will need to take in order to put together a successful submission to the shuttle. 

Use this guide alongside the most up to date README for user_caravel_project which is linked 

within the first bullet point 

 

Getting Setup 

Cloning & Caravel: 

● Begin with cloning your caravel-project to your machine and then going to follow the 

caravel install instructions in README for user_caravel_project at. 

● caravel_user_project/index.rst at main · efabless/caravel_user_project (github.com) 

WSL:  

● Set up a linux vm on Windows: 

○ https://docs.microsoft.com/en-us/windows/wsl/install 

○ -<distro name> = ubuntu 

○ Ensure Virtual Machine Platform and Windows Subsystems for Linux are enabled in 

Windows features 

https://github.com/WebKingdom/bitcoin_asic
https://github.com/efabless/caravel_user_project/blob/main/docs/source/index.rst#section-quickstart
https://docs.microsoft.com/en-us/windows/wsl/install


51 

 

Figure 22. Required Windows Features 

● To ensure WSL2 does not use all the RAM on your system, create or edit the .wslconfig file 

in your %USERPROFILE% directory (Can be found by typing %USERPROFILE% in file 

explorer but is usually in C:/Users/<username>/). 

● Contents should be (can add more like processors = …): 

[wsl2] 

memory = 8GB # Limits VM memory 

 

● In WSL run these commands to setup basic linux toolkit or to keep tools updated: 

○ sudo apt update 

○ sudo apt upgrade 

 

MAP WSL: 

● Open file explorer 

● Right click This PC 

● Click “Map network drive…” 

● In the Folder: field paste “\\wsl$\Ubuntu” 

● This will allow you to see your linux workspace from the windows file system for easy 

editing on VS Code 

 

Docker Setup: 

● Setup Docker and integrate with WSL using this guide: 

○ https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers 

https://docs.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers


52 

 

Magic setup (optional, only if local environment does not function): 

● Clone most recent magic repository into wsl 

○ git clone git://opencircuitdesign.com/magic 

● Install other dependencies by running these commands: 

○ sudo apt-get install m4 

○ sudo apt-get install tcsh 

○ sudo apt-get install csh 

○ sudo apt-get install libx11-dev 

○ sudo apt-get install tcl-dev tk-dev 

○ sudo apt-get install mesa-common-dev libglu1-mesa-dev 

● Enter git repo for magic and run: 

○ ./configure 

○ sudo make 

○ sudo make install 

 

Bash Script setup: 

● Go to /etc and add these exports to the bottom of the file bash.bashsrc so that you don't 

have to on every boot up 

○ export DISPLAY=$(grep -m 1 nameserver /etc/resolv.conf | awk '{print $2}'):0.0 

○ export DISPLAY=$(ip route|awk '/^default/{print $3}'):0.0 

○ export OPENLANE_ROOT=~/<Tmp directory>/openlane 

○ export PDK_ROOT=~/<Tmp directory>/pdk 

 

Once you have installed Ubuntu and have made your account and password run the command 

’sudo apt install build-essential’ to install all the essential commands that you will need to run 

ie(make and gcc) 



53 

When installing caravel_user_project, make sure to use the latest mpw-5b release and root (that is, 

execute sudo su -  prior to executing the instructions in that roundtrip document at step 4 and 

beyond). In addition, use the full caravel package (still pending verification) with the export 

CARAVEL_LITE=0 command to prevent any make issues with openlane. 

NOTE: mpw-5c has no issues following the quicktrip documentation (use that for future installs). 

 

Adding Custom Designs to the User Project Wrapper: 

At this point the group needs to implement their own design(s) within the user_project_wrapper 

file in order to have a valid submission. 

 

Setting up an Existing Design in the User Project Wrapper: 

To harden and submit the SHA1 hardware accelerator design created by our team: 

1. Ensure you have WSL set up on Windows mentioned in “Getting Setup” 8.4.4 User Manual 

and can go through the example user_project hardening, simulation, and MPW precheck 

process. Refer to READMEs in: efabless/caravel_user_project: https://caravel-user-

project.readthedocs.io (github.com) 

2. On Linux/Mac, you do not need WSL. 

3. Clone the GitHub repository at: WebKingdom/bitcoin_asic: A Bitcoin mining ASIC 

(github.com) 

4. If you have configured your local environment according to the READMEs in: 

efabless/caravel_user_project: https://caravel-user-project.readthedocs.io (github.com) 

and have Docker running, the following commands should harden the design: 

a. make sha1_top 

b. make user_project_wrapper 

5. To get RTL and GL simulation results run: 

a. make verify-sha1_top_test1-rtl 

b. make verify-sha1_top_test2-rtl 

c. make verify-sha1_top_test1-gl 

d. make verify-sha1_top_test2-gl 

6. To view simulation run: 

a. gtkwave verilog/dv/sha1_top_test2/RTL-sha1_top_test1.vcd 

b. gtkwave verilog/dv/sha1_top_test2/GL-sha1_top_test1.vcd 

c. gtkwave verilog/dv/sha1_top_test2/RTL-sha1_top_test2.vcd 

d. gtkwave verilog/dv/sha1_top_test2/GL-sha1_top_test2.vcd 

7. To run precheck: 

a. make precheck 

b. make run-precheck 

 

https://github.com/efabless/caravel_user_project/blob/main/docs/source/roundtrip.rst
https://github.com/efabless/caravel_user_project
https://github.com/efabless/caravel_user_project
https://github.com/WebKingdom/bitcoin_asic
https://github.com/WebKingdom/bitcoin_asic
https://github.com/efabless/caravel_user_project


54 

Testing Locally: 

Refer to the simulation and hardening sections of the Readme for the user_project_wrapper 

README. (Link) 

 

Submitting to the eFabless Open MPW Shuttle: 

 

 

Figure 23. Submission Page to eFabless. Source: [6] 

 

● Create a project on the Efabless website, and fill out all required information. 

● Execute a precheck verification on your project’s workspace. 

● Execute a tapeout verification on your project’s workspace. 

● Download the export compliance form and complete and submit via the request. 

● Review and complete your MPW service agreement. 

● Review deliverables of your MPW request and select ‘Submitter Confirmed’ when 

complete. 

https://github.com/efabless/caravel_user_project/blob/main/docs/source/index.rst


55 

8.4.5 References 

[1] H. L. Pham, T. H. Tran, T. D. Phan, V. T. Duong Le, D. K. Lam and Y. Nakashima, "Double SHA-

256 Hardware Architecture With Compact Message Expander for Bitcoin Mining," in IEEE Access, 

vol. 8, pp. 139634-139646, 2020, doi: 10.1109/ACCESS.2020.3012581. 

[2] M. Vilim, H. Duwe and R. Kumar, "Approximate bitcoin mining," 2016 53nd ACM/EDAC/IEEE 

Design Automation Conference (DAC), 2016, pp. 1-6, doi: 10.1145/2897937.2897988. 

[3] J. Kaur and L. Sood, “Comparison Between Various Types of Adder Topologies,” 2022 IJCST. 

Available: http://www.ijcst.com/vol61/1/13-Jasbir-Kaur.pdf. [Accessed: 26-Mar-2022]. 

[4] H. L. Pham, T. H. Tran, T. D. Phan, V. T. Duong Le, D. K. Lam and Y. Nakashima, "Double SHA-

256 Hardware Architecture With Compact Message Expander for Bitcoin Mining," in IEEE Access, 

vol. 8, pp. 139634-139646, 2020, doi: 10.1109/ACCESS.2020.3012581. 

[5] “Getting Started with Open MPW and chipIgnite” YouTube, uploaded by Efabless, 3rd of 

February 2022, https://www.youtube.com/watch?v=vJqP7ZR0NrI. 

[6] “Efabless.com,” eFabless. [Online]. Available: https://efabless.com/open_shuttle_program. 

[7] “Caravel,” Zero to ASIC Course. [Online]. Available: 

https://www.zerotoasiccourse.com/tags/caravel/. 

[8] “Caravel user project,” Caravel User Project - CIIC Harness documentation. [Online]. Available: 

https://caravel-user-project.readthedocs.io/en/latest/. [Accessed: 05-Dec-2022]. 

[9] “Hash algorithm comparison: MD5, SHA-1, SHA-2 &amp; sha-3,” Code Signing Store, 23-Mar-

2022. [Online]. Available: https://codesigningstore.com/hash-algorithm-comparison. [Accessed: 

05-Dec-2022]. 

Double SHA-256 Hardware Architecture With Compact Message Expander for Bitcoin Mining | 

IEEE Journals & Magazine | IEEE Xplore 

 

https://ieeexplore.ieee.org/document/9151160
https://ieeexplore.ieee.org/document/9151160

	1 Team
	1.1 Team Members
	1.2 Required Skill Sets for Your Project
	1.3 Skill Sets covered by the Team
	1.4 Project Management Style Adopted by the team
	1.5 Initial Project Management Roles

	2 Introduction
	2.1 Problem Statement
	2.2 Requirements & Constraints
	2.3 Engineering Standards
	2.4 Intended Users and Uses

	3 Project Plan
	3.1 Project Management/Tracking Procedures
	3.2 Task Decomposition
	3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
	3.4 Project Timeline/Schedule
	3.5 Risks And Risk Management/Mitigation
	3.6 Personnel Effort Requirements
	3.7 Other Resource Requirements

	4  Design
	4.1 Design Context
	4.1.1 Broader Context
	4.1.2 User Needs
	4.1.3 Prior Work/Solutions
	4.1.4 Technical Complexity

	4.2 Design Exploration
	4.2.1 Design Decisions

	4.3 Proposed Design
	4.3.1 Design Visual and Description
	4.3.2 Functionality

	4.4 Technology Considerations
	4.5 Design Analysis
	4.6 Design Plan

	5  Testing
	5.1 Testing Process Background
	5.2 Interface Testing
	5.3 Integration Testing
	5.4 System Testing
	5.5 Acceptance Testing
	5.6 Security Testing
	5.7 Results

	6  Implementation
	6.1 Original Design
	6.2 Final Design

	7  Professionalism
	7.1 Areas of Responsibility
	7.2 Project Specific Professional Responsibility Areas
	7.3 Most Applicable Professional Responsibility Area

	8  Closing Material
	8.1 Discussion
	8.2 Changes Since Cpre 491
	8.3 Conclusion
	8.4 Appendices
	8.4.1 Team Contract
	8.4.2 Alternative Design
	8.4.3 Github Link (Full Code Repository)
	8.4.4 User Manual
	8.4.5 References



